
Hoai-Linh T. NGUYEN¹, Bảo-Huy NGUYÊN¹,², Thanh VO-DUY¹, João P. F. TROVÃO²

¹CTI Lab. for EVs, Hanoi University of Science and Technology, Vietnam
²e-TESC Lab., Université de Sherbrooke, Canada
Adaptive Filtering Strategies for HESS in EVs using EMR

- Context and Objective -

Energy management strategy (EMS) of a hybrid energy storage system in electric vehicles

Conventional filtering strategies

Light computation resources

Challenge for calculating the cut-off frequency for the system

[Salmasi 2007]

EMS

Rule-based

Optimization-based

Deterministic

Artificial intelligence

Filtering algorithms

Simple adaptive methods

[NguyenHHT 2021]
Adaptive Filtering Strategies for HESS in EVs using EMR

- Outline -

1. Modeling and control of a battery/supercapacitor EV
2. Adaptive filtering strategies
3. Simulations, experiments, and results
4. Conclusions and perspectives
« Modeling and control of a battery/supercapacitor EV »
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR [Bouscayrol 2012] -
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -

\[i_{sc} = \frac{1}{L_s + r} (u_{sc} - u_{ch}) \]
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -

![Diagram of HESS system](image)

1. **Battery (Batt.)**
 - Voltage: u_{bat}
 - Current: i_{bat}

2. **Supercapacitor (SC)**
 - Voltage: u_{sc}
 - Current: i_{sc}

3. **Inductor**
 - Current: i_{sc}

4. **Chopper**
 - Voltage: u_{bat}
 - Current: i_{ch}

5. **Coupling**
 - Voltage: u_{bat}
 - Current: i_{trac}

6. **Gearbox**
 - Torque: T_m
 - Angular velocity: ω_m

7. **Wheel**
 - Force: F_{trac}

8. **Environment**
 - Force: F_{env}

9. **Vehicle (v_veh)**
 - Velocity: v_{veh}

Equations:*

- i_{bat}
- u_{bat}
- i_{ch}
- u_{ac}
- u_{bc}
- i_g
- T_m
- ω_m
- F_{trac}
- F_{env}
- v_{veh}
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -

EMR’21, Lille, June 2021
Adaptive Filtering Strategies for HESS in EVs using EMR

- System representation using EMR -
Adaptive Filtering Strategies for HESS in EVs using EMR

- Inversion-based control -

Focus of this work
« Adaptive filtering strategies for energy management »
The main idea:

If SC have more “ability”, it can more support the battery

\[i_{bat} \sim (1 - \text{SC "ability"}) \]

What is the SC “ability”? [NguyenHLT 2021]

→ 3 ways to calculate the \(i_{bat \ ref} \)

→ 3 real-time strategies with only SC voltage and traction current measurements.
Adaptive Filtering Strategies for HESS in EVs using EMR

- Adaptive filtering strategies -

Adaptive low-pass filter transformation:

\[
\begin{align*}
\frac{1}{\tau s + 1} & \quad \rightarrow & \quad \frac{1}{\tau s} \\
+ & \quad \rightarrow & \quad + \\
\end{align*}
\]

SoC-based strategy

\[
k_a = \frac{u_{SC\ meas} - u_{SC\ min}}{u_{SC\ min}}
\]

Energy-based strategy

\[
k_a = \frac{u_{SC\ meas}^2 - u_{SC\ min}^2}{u_{SC\ min}^2}
\]

Voltage-based strategy

\[
k_a = \left(\frac{u_{SC\ meas} - u_{SC\ min}}{u_{SC\ min}}\right)^2
\]
« Simulations, experiments, and results »
Adaptive Filtering Strategies for HESS in EVs using EMR

- Experimental reference model -

Specifications

<table>
<thead>
<tr>
<th>EV (i-MiEV)</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle total weight M_{tot}</td>
<td>1250 kg</td>
</tr>
<tr>
<td>Gear box ratio k_{gear}</td>
<td>7.065</td>
</tr>
<tr>
<td>Wheel radius R_{wheel}</td>
<td>0.2844 m</td>
</tr>
<tr>
<td>Aerodynamic standard $C_d A_f$</td>
<td>0.8295 m2</td>
</tr>
<tr>
<td>Rolling friction coefficient c_r</td>
<td>0.02</td>
</tr>
<tr>
<td>Air density (at 20°C) ρ</td>
<td>1.25 kg/m3</td>
</tr>
</tbody>
</table>

IPMSM

Maximum power P_{max}	49 kW
The number of polar pairs z_p	4
Pole flux ϕ_p	0.06 Wb
Stator inductance L_{ad}	140 μH
Stator inductance L_{sq}	210 μH
Windings resistance $R_{sd} = R_{sq}$	12 mΩ

Battery module (LEV50 Li-ion)

Cell storage capacity Q_{bat}	50 Ah
Cell OCV $u_{cell_{nom}}$	3.7 V
Cell OCV (at 20% SOC) $u_{cell_{min}}$	3.06 V
Cell resistance r_{bat}	1.7 mΩ
Number of cells in series $n_{se_{bat}}$	88
Number of cells in parallel $n_{pa_{bat}}$	1

SC module (NESSCAP EMHSR-0062C0-125R0SR2)

SC module nominal voltage u_{sc_nom}	125 V
SC module nominal capacitance C_{mod}	62 F
SC module internal resistance r_{sc_mod}	10 mΩ

System parameters
Adaptive Filtering Strategies for HESS in EVs using EMR

- Simulations results -

1. Vehicle speed (NEDC)

2. Vehicle speed (Artemis)

3. Battery rms currents

4. Battery current standard deviations
Adaptive Filtering Strategies for HESS in EVs using EMR

- Experiments Using Signal Hardware-In-the-Loop Simulation -

Signal HIL system for real-time experimental validation [Vo-Duy 2020]
Adaptive Filtering Strategies for HESS in EVs using EMR

- Experimental test bench setup -

1. Host computer
2. Emulated ECU
3. Control ECU
4. Interface circuit

Vehicle velocity (WLTC class 2)

Experimental driving cycle

With control ECU
computational time: 0.5 ms
Adaptive Filtering Strategies for HESS in EVs using EMR

- Experimental results -

1. HESS currents (energy-based)

2. Zoom shape of HESS currents (energy-based)

3. SC voltage (energy-based)

4. Zoom shape of SC voltage (energy-based)

Error < 3%
« Conclusions and perspectives »
Adaptive Filtering Strategies for HESS in EVs using EMR

Conclusions

- HESS EV Modeling and control using EMR
- Propose three simple but effective adaptive filtering strategies
- Simulations and experimental validations using signal HIL simulation

Future work:
- Real-time optimization-based strategy
- Reduce-scale power HIL
« Thank for your listening and have a good time at EMR Summer School 2021 »
« BIOGRAPHIES AND REFERENCES »
Adaptive Filtering Strategies for HESS in EVs using EMR

- Authors -

Hoai-Linh T. NGUYEN
Master student since 2020
Hanoi University of Science and Technology, Hanoi, Vietnam
MSc in Electrical Engineering at Hanoi Univ. Sci. Tech., Vietnam (2020)
Research topics: Control engineering, Modelling and Simulation, Control of power electronics and electrical drivers and applications for electric vehicles

Dr. Bảo-Huy NGUYỄN
Postdoc at e-TESC lab, University of Sherbrooke, Canada
Researcher at CTI lab for EVs, Hanoi Univ. Sci. Tech., Vietnam
PhD in Electrical Engineering at University of Lille (France) and University of Sherbrooke (Canada) in 2019
Research topics: Control engineering, power electronics, machine drives, and their applications for electrified vehicles
Adaptive Filtering Strategies for HESS in EVs using EMR

- Authors -

Dr. Thanh VO-DUY
Researcher at CTI Lab. For EVs
Lecturer at Dept. of Industrial Automation,
School of Electrical Engineering
Hanoi University of Sciences & Technology
Member of the VPP Technical Committee of IEEE-VTS
PhD in Electrical Engineering at Hanoi University of Sci. and Tech.
Research topics: Control engineering, Modelling and Simulation, Control of power electronics and electrical drivers and applications for electric vehicles

Prof. João P. F. TROVÃO
Université de Sherbrooke, Sherbrooke, QC, Canada
PhD in Electrical Engineering at University of Coimbra, Portugal (2012)
Research topics: EVs, renewable energy, energy management, power quality, and rotating electrical machines

« Time for questions »