« EMR and Inversion-Based Control of a CVT-based Hybrid Truck »

Dr. Clément MAYET¹,², Dr. Ali CASTAINGS¹,², Prof. Alain BOUSCAYROL¹,², Prof. Théo Hofman³

¹ L2EP, University Lille1, France
² MEGEVH network, France
³ Technical University of Eindhoven, The Netherland
FEDER project: Multi-sources hybrid truck with innovative transmission systems

Objective of the project: Comparison of different structures

In the presentation

Innovative transmission + Multi-sources

CVT + Battery + Supercapacitor
1. **EMR and control of the CVT-based hybrid truck**
 - Gearbox and CVT principles
 - EMR and control
 - Energy Management Strategy
 - Results

2. **EMR and control of an Hybrid Energy Storage System**
 - H-ESS principles
 - EMR and control
 - Energy Management Strategy
 - Results

3. **Conclusion & Perspectives**
« EMR and control of the CVT-based hybrid truck »
« EMR and IBC of a CVT-based hybrid truck »

- Gearbox and CVT principles -

 Classical Manual Gearbox

Efficiency: 92%

Continuous Variable Transmission

Efficiency: 85%
« EMR and IBC of a CVT-based hybrid truck »

- EMR and Control -

EMR’17, University Lille 1, June 2017

Classical manual gearbox

Efficiency: 92%

\[
\begin{aligned}
T_{dvt} &= k_{dvt} \eta_{dvt}^k T_{tc} \\
\Omega_{tc} &= k_{dvt} \Omega_{dvt}
\end{aligned}
\]

with \(k_{dvt} = [k_1, k_2, k_3, k_4, k_5, k_6] \)

and

\[
\begin{aligned}
k &= 1 \quad \text{if} \quad T_{tc} \Omega_{tc} \geq 0 \\
k &= -1 \quad \text{if} \quad T_{tc} \Omega_{tc} < 0
\end{aligned}
\]

Continuous Variable Transmission

Efficiency: 85%

\[
\begin{aligned}
T_{cvt} &= k_{cvt} \eta_{cvt}^k T_{tc} \\
\Omega_{tc} &= k_{cvt} \Omega_{cvt}
\end{aligned}
\]

with \(k_{cvt} \in [k_1, k_6] \)

and

\[
\begin{aligned}
k &= 1 \quad \text{if} \quad T_{tc} \Omega_{tc} \geq 0 \\
k &= -1 \quad \text{if} \quad T_{tc} \Omega_{tc} < 0
\end{aligned}
\]
- Energy Management Strategy -

Rules-based strategy

Strategy of the hybridization
- Electric at low speeds
- ICE at medium speeds + electric assistance
- ICE at high speed + load the battery

Strategy of the CVT

Recovery of the braking energy

Respect the limitations
« EMR and IBC of a CVT-based hybrid truck »

- Simulation Results -

- Chart descriptions -

1. **Velocity (km/h)**: This chart shows the velocity of the vehicle over time, with the y-axis ranging from 0 to 100 km/h.

2. **Traction power (kW)**: This chart displays the traction power output over time, with the y-axis ranging from 0 to 250 kW.

3. **ICE power (kW)**: This chart illustrates the power output from the Internal Combustion Engine (ICE) over time, with the y-axis ranging from 0 to 250 kW.

4. **Electric power (kW)**: This chart shows the electric power output over time, with the y-axis ranging from -100 to 100 kW.

5. **Transmission ratio**: This chart displays the transmission ratio over time, with the y-axis ranging from 0 to 8.

6. **SoC**: This chart illustrates the State of Charge (SoC) over time, with the y-axis ranging from 0.74 to 0.84.
- Simulation Results -

Fuel consumption

<table>
<thead>
<tr>
<th></th>
<th>CT-DVT</th>
<th>HET-DVT</th>
<th>HET-CVT</th>
<th>HVT-DVT</th>
<th>HVT-CVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque (Nm) CVT</td>
<td>18,4 L/100km</td>
<td>19,2 L/100km</td>
<td>-13,1 %</td>
<td>-9,7 %</td>
<td></td>
</tr>
</tbody>
</table>

Energy saving and losses

<table>
<thead>
<tr>
<th></th>
<th>CVT-ICE</th>
<th>CVT-eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridization</td>
<td>-4/6 %</td>
<td>-6/8 %</td>
</tr>
</tbody>
</table>

- **Interest of the CVT?**

- **CVT efficiency!**
« Hybrid Energy Storage System »
There is no ideal source

Power density (W/kg)

Energy density (Wh/kg)

Ideal source
+ life time
+ low cost,…

Battery as secondary source

- Autonomy, charging time
- Cost
- Life time

Multi-sources

Supercapacitor (SCs)
Battery
Life time

Vehicle’s viability
EMR’17, University Lille 1, June 2017

« EMR and IBC of a CVT-based hybrid truck »

- EMR and control -

Battery / SCs + chopper
SCs voltage limitations

\[\begin{align*}
 i_{\text{hsc-ref/filt}} > 0 & \quad \text{if } u_{\text{sc-m}} > u_{\text{sc-m1}} \geq 0 \\
 i_{\text{hsc-ref/filt}} \leq 0 & \quad \text{if } u_{\text{sc-M1}} \leq u_{\text{sc-m}} < 0
\end{align*} \]

Low-pass filter

\[
i_{\text{b-ref}} = k_{\text{lim}} i_{\text{vsi-mea}} + (1 - k_{\text{lim}}) i_{\text{b-ref-filt}} \quad k_{\text{lim}} \in [0,1]
\]
« Conclusion & Perspectives »
Conclusion

• EMR, control, and EMS of the whole system
• Improvement of the ICE operation BUT increasing of the transmission losses using the CVT
• Current peaks are reduced using the H-ESS
• The battery size can be reduced using the H-ESS

Perspectives

• Optimization-based strategy
• Coupling of the EMS of traction and H-ESS
• Investigate other innovative transmission systems (EVT, DPG,...)
« BIOGRAPHIES AND REFERENCES »
EMR’17, University Lille 1, June 2017

- Authors -

Dr. Clément MAYET
University Lille 1, L2EP, France
PhD in Electrical Engineering at Univ.Lille1 (2016)
Research topics: Energy management, traction systems, HEVs, HIL simulation

Dr. Ali CASTAINGS
University Lille 1, L2EP, France
PhD in Electrical Engineering at Univ.Lille1 (2016)
Research topics: Energy management of multi-sources vehicles, HIL simulation

Prof. Alain BOUSCAYROL
University Lille 1, L2EP, MEGEVH, France
Coordinator of MEGEVH, French network on HEVs
PhD in Electrical Engineering at University of Toulouse (1995)
Research topics: EMR, HIL simulation, tractions systems, EVs and HEVs

Prof. Théo HOFMAN
Technical University of Eindhoven, The Netherland
PhD in Mechanical Engineering at TU/e (2007)
Research topics: control and system design optimization