« EMR AND OPTIMAL ENERGY MANAGEMENT STRATEGY OF A PARALLEL HYBRID ELECTRIC VEHICLE »

Abdoulaye PAM1,3, Prof. Alain BOUSCAYROL1,2, Philippe FIANI3, Frédéric NOTH3

1 L2EP, Université Lille1, France
2 MEGEVH network, France
3 Sherpa-Engineering, France
EMR’17, Lille, June 2017

- Context & Objective -

• Economic and Environmental issues lead to Hybrid Technology [Citepa 15]

Objective: Achieve an optimized Energy Management Strategy of a parallel Hybrid Electric Vehicle
« EMR and optimized EMS of a parallel hybrid Electric Vehicle »

- Context & Objective -

- Energy Management Strategy [Trigui 04]

- by Optimization-based (Dynamic Programming, etc)
 - Compatible with any system model
 - Optimal results
 - Not usable in real time
 - Important IT resources
 - Long time simulation

- by Rule-based
 - Usable in real time
 - Very fast simulation
 - Requires some expertise
 - Not necessarily optimal results

Objective: define a Rule-based EMS from a DP EMS
1. **Energetic Macroscopic Representation**
 - Studied vehicle
 - EMR of the vehicle

2. **Inversion Based Control**
 - Control scheme
 - Reduced Model

3. **Energy Management Strategy**
 - EMS by Dynamic Programming
 - Rule-based algorithm

4. **Conclusion & Perspectives**
EMR'17
University Lille 1
June 2017

Summer School EMR'17
“Energetic Macroscopic Representation”

« EMR of the Vehicle »
• The studied vehicle

Parallel Hybrid Electric Vehicle architecture

Parameters: Nickel Metal Hydride Battery 7.2V/6Ah /38 modules // Electric Machine 20 kW // ICE 43 kW // Vehicle Mass: 1,2 T

The energetic study of the vehicle is done without its clutch
EMR'17, Lille, June 2017

- Energetic Macroscopic Representation -

EMR (forward approach)

\[T_{ice} = \frac{1}{\tau_{ice}} \int (T_{ice_ref} - T_{ice}) \, dt \]

\[\begin{cases} T_{blt} = k_{blt} T_{em} + T_{ice} \\ \omega_{em} = \frac{1}{k_{blt}} \omega_{blt} \end{cases} \]

\[\begin{align*} v_{s-dq} &= [P(\theta_{d/s})]v_s \\ i_{im} &= [P(\theta_{d/s})]^{-1} i_{s-dq} \\ i_{s-dq} &= \frac{1}{\tau_{eq}} \int (v_{s-dq} - e_{s-dq} - R_s i_{s-dq}) \, dt \\ \varphi_{rd} &= \frac{R_r}{L_r} \int (M_{sr} i_{sd} - \varphi_{rd}) \, dt \\ T_{em} &= p M_{sr} (\varphi_{rd} i_{sq} - \varphi_{ra} i_{sd}) \\ F_{br} &= F_{br_ref} \\ F_{veh} &= F_{veh} - F_{br} \end{align*} \]
EMR'17, Lille, June 2017

- Energetic Macroscopic Representation -

- backward model deduced from EMR

\[T_{ic} = \left(1 - k \eta_T \right) T_{blt} \]
\[\Omega_{ic} = \frac{1}{k_{mt} r_{wh}} V_{veh} \]

- Used for EMS studying, the sizing and design of powertrains

- There local control is assumed ideal [Horrein 15]
<Inversion Based Control>
« EMR and optimized EMS of a parallel hybrid Electric Vehicle »

- Inversion Based Control (forward approach) -
• Reduced model for EMS studying (quasi-static model)

\[
\begin{align*}
T_{em} &= T_{em_ref} \\
i_{bat} &= \frac{T_{em} \Omega_{em}}{\eta_{em} v_{bat}}
\end{align*}
\]

\[T_{ice} = T_{ice_ref}\]

EMS is focused on the power flows between ICE and Electric Machine
« ENERGY MANAGEMENT STRATEGY »
EMR’17, Lille, June 2017

- EMS using Dynamic Programming -

- Dynamic Programming principle [Guzzella 10]

- Basic relation

\[J^* = \min(J) = \min \left\{ \sum_{k=0}^{N-1} [L(x(k), u(k), k)] \right\} \]

- Constraints

\[\text{SoC}_{\text{min}} \leq x(k) \leq \text{SoC}_{\text{max}} \]
\[x(k_{\text{final}}) = x(k_{\text{initial}}) \]

with:

- J, the cost function
- L, the cost function between two samples
- x, State of Charge of the battery
- u, the coefficient of distribution of the traction torque

DP is not usable in real time
- Deduced Rule-based EMS -

- Rule-based algorithm for EMS

![Diagram showing deduced rule-based EMS algorithm for a parallel hybrid electric vehicle](image)

- Electric Mode: $kd_T = 1$
- Thermal Mode: $-1 \leq kd_T \leq 0$
- Hybrid Mode: $0 \leq kd_T < 1$

RB-EMS is usable in real time
Results based on the «forward» model of the vehicle

<table>
<thead>
<tr>
<th></th>
<th>DP-EMS</th>
<th>RB-EMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE Fuel Consumption [L/100 Km]</td>
<td>3.52</td>
<td>3.6</td>
</tr>
<tr>
<td>Computation time [s]</td>
<td>420</td>
<td>2</td>
</tr>
</tbody>
</table>

INTERNAL CHARGING OF THE BATTERY BY THE ICE TO OBTAIN THE INITIAL SOC

DP / RB : Difference of 2% over all
« CONCLUSION & PERSPECTIVES »
Conclusion

• Realization of the EMR and the IBC of a parallel HEV
• Optimal Energy management strategy using DP
• Deduction of Rule-based algorithm from DP-EMS results

Perspectives

• Experimental validation of the Rule-based EMS (real time)
• Take into account more parameters for the ICE
« BIOGRAPHIES AND REFERENCES »
EMR’17, Lille, June 2017

- Authors -

Mr. Abdoulaye PAM
University Lille 1, L2EP/ Sherpa-Engineering, France
PHD student in Electrical Engineering at University Lille1
Master’s degree in EE at University Lille1 (2016)
Research topics: EMR, Traction systems, HIL simulation

Prof. Alain BOUSCAYROL
University Lille 1, L2EP, MEGEVH, France
Coordinator of MEGEVH, French network on HEVs
PhD in Electrical Engineering at University of Toulouse (1995)
Research topics: EMR, HIL simulation, tractions systems, EVs and HEVs

Mr. Philippe FIANI
Sherpa-Engineering, France
R&D and Engineering Department Manager

Mr. Frédéric NOTH
Sherpa-Engineering, France
ADAS Department Technical Manager

