«EMR and inversion-based control of a piezoelectric actuator »

Dr. Sofiane GHENNA¹, Assoc. Prof. Frederic GIRAUD¹, Assoc. Prof. Christophe GIRAUD-AUDINE², Prof. Betty LEMAIRE-SEMAIL¹,³

¹ L2EP, Université Lille 1, France
² L2EP, Arts et Métiers ParisTech, France
³ MEGVEH network, France
1. **Introduction**
 - Introduction to piezoelectricity
 - Piezoelectric actuator

2. **EMR of a piezo-actuator**
 - Electromechanical modeling
 - Modeling in rotating frame

3. **Inversion-based control of a piezo-actuator**
 - Vibration amplitude control
 - Tracking of resonance frequency

4. **Conclusion**
«1. Introduction»
Certain materials produce electric charges on their surfaces as a consequence of applying mechanical stress.

Pierre Curie (1859-1906), Nobel Prize in Physics, 1903

Refers to a deformation of these materials that results from the application of an electric field.

Gabriel Lippmann (1845-1921), Nobel Prize in Physics, 1908

Piezoelectricity is extensively utilized in the fabrication of various devices such as: transducers, actuators, surface acoustic wave devices, frequency control and so on.
EMR'17, University Lille 1, June 2017

« EMR and inversion-based control of a piezoelectric actuator »

- Piezoelectric actuator -

A: Langevin transducer
B: Metal mass
C: Pre-stressed Bolt
D: Piezoelectric elements
«EMR of a piezo-actuator»
« EMR and inversion-based control of a piezoelectric actuator »

- EMR of a piezo-actuator -

\[\dot{\dot{w}} + d_s \dot{w} + c \dot{w} = \gamma v - f \]
$$m\ddot{w} + d_s \dot{w} + c w = \gamma v - f$$

$$w = (W_d + j W_q) e^{i \omega t}$$

$$v = (V_d + j V_q) e^{i \omega t}$$

$$f = (F_d + j F_q) e^{i \omega t}$$

$$(c - m \omega^2) W_d - \omega (2 m \dot{W}_q + d_s W_q) = \gamma V_d - F_d$$

$$(c - m \omega^2) W_q + \omega (2 m \dot{W}_d + d_s W_d) = \gamma V_q - F_q$$

Power supply

Piezoelectric actuator

Electrical source

Inverter

Rotation matrix

Electromechanical Transformation

Elastic Coupling

Accumulation element

Mechanical source
«Inversion-based control of a piezo-actuator»
« EMR and inversion-based control of a piezoelectric actuator »

- EMR of a piezo-actuator -

Tuning path

Control path
« EMR and inversion-based control of a piezoelectric actuator »
EMR and inversion-based control of a piezoelectric actuator

\[
\frac{W_q}{W_d} = \frac{(c - m\omega^2)}{\omega(2ms + ds)}
\]

\[
(c - m\omega^2)W_d - \omega(2m\dot{W}_q + dsW_q) = \gamma V_d
\]

\[
(c - m\omega^2)W_q + \omega(2m\dot{W}_d + dsW_d) = \gamma V_q
\]

\[
\frac{W_d}{V_q} = \frac{G}{1 + \tau_s}
\]

Electrical source \[\rightarrow\] Inverter \[\rightarrow\] Rotation matrix \[\rightarrow\] Electromechanical Transformation \[\rightarrow\] Elastic Coupling \[\rightarrow\] Accumulation element \[\rightarrow\] Mechanical source
« EMR and inversion-based control of a piezoelectric actuator »
« EMR and inversion-based control of a piezoelectric actuator »

- **Graph 1:**
 - Frequency vs. Time [Hz]
 - Frequency range: 2.7905 to 2.793 x 10^7
 - Time range: 0 to 0.12 s

- **Graph 2:**
 - Vibration amplitude vs. Time [µm]
 - Vibration amplitude range: -0.5 to 2.5 µm
 - Time range: 0 to 0.12 s

- **Graph 3:**
 - Voltage vs. Time [V]
 - Voltage range: 30 to 60 V
 - Time range: 0 to 0.12 s

Graphs show simulated and measured data for vibration amplitude, frequency, and voltage over time.
Conclusion
Conclusion

- A piezoelectric model is described in a rotating frame
- Energetic Macroscopic Representation (EMR) and inversion-based control
- Results are confirmed with experimental validation and numerical simulation
- Control of the travelling wave in a finite beam, in both direction and vibration amplitude
« EMR and inversion-based control of a piezoelectric actuator »

- Authors -

Dr. Sofiane GHENNA
L2EP, University Lille 1
PhD in Electrical Engineering (2016)
Research topics: Modeling and control of piezoelectric actuators

Prof. Betty LEMAIRE-SEMAIL
University Lille 1, L2EP, MEGEVH, France
PhD at University of Paris XI, Orsay(1990)
Research topics: EMR, Control, Piezoelectric actuators

Assoc. Prof. Frederic GIRAUD
University Lille 1, L2EP, France
PhD at University of Lille I, Lille (2002)
Research topics: EMR, Control, Piezoelectric actuators

Assoc. Prof. Christophe GIRAUD-AUDINE
L2EP, Arts et Métiers ParisTech, France
PhD in Electrical Engineering at INP de Toulouse (1998)
Research topics: modelling and control of devices based on piezoelectric and shape memory alloys