« BACKSTEPPING CONTROL OF A FUEL CELL VEHICLE USING EMR »

C. DEPATURE 1,2, Dr. W. LHOMME1, Prof. P. SICARD2, Prof. A. BOUSCAYROL1, Prof. L. BOULON2
1L2EP, Université Lille1, MEGEVH network, France
2GREI, Université du Québec à Trois-Rivières, Canada

Safe energy management: stable control

- Fuel cell vehicle structure -

• Important driving range
• No local emission
• Power transients

traction power
fuel cell power (f(dUf/dt))
supercapacitor power

power (pu)
time (s)
Backstepping control of a FC vehicle using EMR

- EMR and Inversion-Based Control (2000)

- Backstepping: step by step iterative procedure (1990)

assumptions

- Graphical tool.
- Energy management and real time applications.
- Global stability not demonstrated.

energetic approach

- Electromechanical
- Thermal
- Electrochemical
- Piezo-electric

inversion

- Peugeot 3008 HY4, ...
- DW10, ...
- Ballard FC, ...
- Stimtac Standalone

system model

- Linear IM
- Autonomous vehicle “Red Rover”
- Duffing oscillator

Representation (integral causality)

- Local / Global Control

strategy

- Mathematical tool.
- Tracking control. Non linear systems. No EV and HEV application.
- Ensure a stable control.
Objective

- Deduce a stable control of a Fuel Cell/ Supercapacitor vehicle. It is possible to use EMR and Backstepping?

Outline

1. Modelling and Representations
2. Backstepping control
3. Simulation
4. Conclusion and perspectives
« 1. MODELLING AND REPRESENTATION »

« Backstepping control of a FC vehicle using EMR »

- EMR of the FC vehicle -
« Backstepping control of a FC vehicle using EMR »
- State representation of the FC vehicle -

EMR’16, UdeS, Longueuil, June 2016

3 state variables: u_{bus}, i_{fc}, i_{sc}
2 tuning variables: m_{hfc}, m_{hsc}
2 cascade loops: i_{hfc}, i_{hsc}

Tuning path from EMR

State representation

$$
\begin{align*}
\frac{d}{dt} u_{bus} &= \frac{1}{C_{bus}} (i_s - i_{sc}) \\
i_s &= i_{hfc} + i_{hsc} \\
i_{hfc} &= m_{hfc} i_{hsc} \\
\frac{d}{dt} i_{hsc} &= \frac{1}{L_{hsc}} \left(u_{hsc} - m_{hfc} u_{bus} - f_{hsc} i_{hsc} \right)
\end{align*}
$$

« 2. BACKSTEPPING CONTROL »
1. External loop control law: dc bus voltage loop

error e_i

$$e_i = u_{bus-ref} - u_{bus}$$

energetic approach first feedback gain to solve $dV_i/dt \leq 0$

Stability criterion as $dV_i/dt \leq 0$

$$\begin{align*}
V_i &= \frac{1}{2} C_{bus} e_i^2 \\
\frac{d}{dt} V_i &= C_{bus} e_i \frac{d}{dt} e_i = -c_i e_i^2
\end{align*}$$

1st local control law

$$i_{s-ref} = c_i e_i + C_{bus} \frac{d}{dt} u_{bus-ref} + i_i$$

$$i_{s-ref} = P_{i}^{-1} u_{bus-ref} + i_i + e_i C_{i}$$

2. Parallel connection and boost choppers

i_{hfc} and i_{hsc} are mutually considered themselves as perturbations

Solution: Inversion Based Control rules.

coupling \rightarrow repartition

conversion \rightarrow direct inversion
3. FC and SC current loops

Energetic approach

Error $e_{2,3} = i_{fc,ac-ref} - i_{fc,ac}$

Stability criterion as $\frac{dV_{2,3}}{dt} \leq 0$

\[
V_{2,3} = V_1 + \frac{1}{2} L_{fc} e_{2,3}^2
\]

4^{th} local control law

\[
m_{hfc,sc} = \frac{1}{u_{bus}} \left(-L_{fc,ac} \frac{di_{fc,ac-ref}}{dt} - L_{fc,ac} (i_{fc,ac-ref} - e_{2,3}) + u_{fc,ac} - e_{2,3} e_{2,3} \right)
\]

\[
\Rightarrow m_{hfc,sc} = \frac{1}{u_{bus}} \left[u_{fc,ac} \left(P_{1}^{-1} i_{fc,ac-ref} + e_{2,3} e_{2,3} \right) \right]
\]
« 3. Simulation »

« Backstepping control of a FC vehicle using EMR »

- Specifications -

2 strategy levels
1. Bus voltage : $u_{bus-ref} = 80$ V (supply voltage of the traction of the Tazzari Zero)
2. SC recharge : Thermostat strategy

Fuel Cell vehicle parameters
- Fuel Cell 78-55 V, 20 kW
- Supercapacitor 54 V, 130 F
- Smoothing inductors 5.5 mΩ, 0.25 mH
- dc bus capacitor 80 V, 53 mF
- Electric drive 15 kW
- Vehicle 811 kg
- Feedback gains $c_1 = 0.62$, $\xi_{2,3} = 0.13$
Fixed step at 1 ms using continuous derivatives.

- Matlab Simulink Simulation -

EMR'16, UdeS, Longueuil, June 2016

« Backstepping control of a FC vehicle using EMR »

Energy management

Voltage regulation

- Simulation results -

EMR'16, UdeS, Longueuil, June 2016
4. CONCLUSION AND PERSPECTIVES

Backstepping control of a FC vehicle using EMR

- Conclusion -
« Backstepping control of a FC vehicle using EMR »

Perspective : application in real time -

EMR’16, UdeS, Longueuil, June 2016

- Reduced scale Hardware in the loop simulation.
- Filtering strategy
- Taking into account the perturbation (adaptive Backstepping)

• Definition of stability rules : EMR control formalisation.

« Backstepping control of a FC vehicle using EMR »

- Authors -

EMR’16, UdeS, Longueuil, June 2016

Clément Dépature
University Lille 1, L2EP, MEGEVH, France
Université du Québec à Trois Rivières, GREI, Canada
PhD student in Electrical Engineering at University Lille1 and UQTR (2013)
Research topics: Formalization of control systems, EVs and HEVs

Dr. Walter Lhomme
University Lille 1, L2EP, MEGEVH, France
PhD in Electrical Engineering at University Lille1 (2007)
Research topics: modelling, control and energy management for hybrid and electric vehicles.

Prof. Alain BOUSCA YROL
University Lille 1, L2EP, MEGEVH, France
Coordinator of MEGEVH, French network on HEVs
PhD in Electrical Engineering at University of Toulouse (1995)
Research topics: EMR, HIL simulation, traction systems, EVs and HEVs
Prof. Pierre Sicard
Université du Québec à Trois-Rivières, GREI
PhD in Electrical Engineering at Rensselaer Polytechnic Institute (1993)
Research topics: Controller and observer design for nonlinear systems, control of power electronics and multidrive systems, adaptive control, and neural networks.

Prof. Loïc Boulon
Université du Québec à Trois-Rivières, GREI, IRH
PhD in Electrical Engineering at University of Franche-Comté (2009)
Research topics: hybrid electric vehicles, energy and power sources, and fuel-cell systems.

- References -