Clément MAYET, Philippe DELARUE, Alain BOUSCAYROL, Eric CHATTOT, Jean-Noël VERHILLE
L2EP, University Lille1, France
Siemens, Lille & Chatillon, France
Estimate the energy consumption in order to evaluate new solutions of energy reduction!

Accurate models are required with a fast computation time

Modeling difficulties
- Size of the system (important number of subsystems)
- Non-linear & non-reversible aspects of substations (causality change: voltage/current source)
1. Quasi-static model of Val 208 subway
 • EMR
 • Inversion Based Control
 • Braking Management Strategy

2. Extension to a simplified subway line
 • EMR of a simplified subway line
 • Experimental validation

3. Conclusion & perspectives
“QUASI-STATIC MODEL OF VAL 208 SUBWAY”
EMR'14, Coimbra, June 2014

- EMR of Val 208 automatic subway -

\[i_{vsi} = \frac{T_{sm} \Omega_{sm}}{\eta_{smeq} u_c} \]

with \(k = \begin{cases} -1 \text{ when } T_{sm} \Omega_{sm} < 0 \\ 1 \text{ when } T_{sm} \Omega_{sm} > 0 \end{cases} \) and \(T_{sm} = T_{sm-ref} \)

\[i_L = \frac{u_{rail} - u_C}{R_f} \]

\[\{ \Omega_{sm} \text{ common} \} \]

\[T_i = T_{sm} + T_{bk} \]

\[v_{sub} = \frac{1}{M_{eq}} \int (F_{tot} - F_{res}) \, dt \]
1 objective: control v_{sub}
1 constrains: limit u_C

$T_{bk-ref} = K_{Dbk} T_{t-ref}$
$T_{sm-ref} = (1 - K_{Dbk}) T_{t-ref}$

with $K_{Dbk} \in [0,1]$
- Braking management strategy -

- Respect the maximal braking torque of the PMSM $T_{sm bk max}$

- Limit the maximal value of the DC bus voltage u_C

\[
K_{Dbk1} = \frac{\min(\left| T_{i ref} \right|, T_{sm bk max} (\Omega_{sm})), T_{t ref}}{1}
\]

\[
K_{Dbk} = \begin{cases} 1 & \text{during the traction phase} \\ \min(K_{Dbk1}, K_{Dbk2}) & \text{during the braking phase} \end{cases}
\]

\[
T_{sm-ref} = K_{Dbk} T_{i-ref}
\]

\[
T_{bk-ref} = (1 - K_{Dbk}) T_{i-ref}
\]

with $K_{Dbk} \in [0,1]$
« EXTENSION TO A SIMPLIFIED SUBWAY LINE »
- Extension to a simplified subway line -

Rail modelling

\[
R_f(x_{sub})i_r + E_{ss} - u_{rail} = 0
\]

\[
i_r = \frac{E_{ss} - u_{rail}}{2R_f(x_{sub})}
\]

Substation modelling

\[
i_{ss} = \frac{E_{ss0} - E_{ss}}{R_{ss}}
\]

\[
C_1 : E_{ss0} \geq E_{ss}
\]

\[
C_2 : i_{ss} < 0
\]
« EMR of a simplified subway line »

- Extension to a simplified subway line -

\[
i_{ss} = i_{sub} = 0
\]

\[
E_{ss} = \left(2R_f(x_{sub}) + \frac{R_f}{4} \right) i_{sub} + u_C = u_C
\]

\[
i_{sub} = i_{ss} = \frac{E_{ss0} - u_C}{R_{ss} + 2R_f(x_{sub}) + \frac{R_f}{4}}
\]

\[
C_1 : E_{ss0} \geq E_{ss}
\]

\[
C_2 : i_{ss} < 0
\]
2 stations, length: 472 m, Maximal velocity: 58 km/h

Measurements:
- DC bus voltage u_C
- Traction current i_{trac}
- Velocity v_{sub}

Inputs variables:
- Velocity v_{sub}
- Substation voltage E_{ss0}
- Slope
- Auxiliaries P_{aux}
« EMR of a simplified subway line »

- Extension to a simplified subway line -

EMR’14, Coimbra, June 2014

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>3,06 kWh</td>
</tr>
<tr>
<td>ΔW_{avg}</td>
<td>2,98%</td>
</tr>
</tbody>
</table>
« CONCLUSION & PERSPECTIVES »
Conclusion

• Description of a simplified subway line using EMR
• Use of switching element to take into account the non-linearity of the diode rectifier (models commutation)
• Control the DC bus voltage using braking management strategy

Perspectives

• Extend this approach to an entire line with several subways and substations
• Study energy storage systems or reversible substations to improve the global efficiency of a subway line
« BIOGRAPHIES AND REFERENCES »
EMR'14, Coïmbra, June 2014

EMR of a simplified subway line

Authors

Mr. Clément MAYET
University Lille 1, L2EP, France
Siemens, Lille & Chatillon, France
PhD student in Electrical Engineering at University Lille1
Research topics: EMR, Subway line simulation, Energy management

Prof. Alain BOUSCAYROL
University Lille 1, L2EP, MEGEVH, France
Coordinator of MEGEVH, French network on HEVs
PhD in Electrical Engineering at University of Toulouse (1995)
Research topics: EMR, HIL simulation, tractions systems, EVs and HEVs

Dr. Philippe DELARUE
University Lille 1, L2EP, France
Associate professor since 1991
PhD in Electrical Engineering at University of Lille (1989)
Research topics: EMR, Power electronic, Multi-machine system

Dr. Jean-Noël VERHILLE and Mr. Eric CHATTOT
Siemens, Lille & Chatillon, France

