« EMR and Inversion-Based Control of an Automatic Subway »

Dr. W. LHOME, Pr. A. BOUSCAYROL, Dr. P. DELARUE
L2EP, University Lille1, MEGEVH network,
Walter.Lhomme@univ-lille1.fr

Mr. E. CHATTOT, Mr. S. EL FASSI
Siemens, France
subways VAL since 1982

automatic driving supplied by a DC rail

SIEMENS

- better energy recovery
- peak power limitation
- safety operation
- cost reduction
- modern product

project NeoVAL

among the innovations: feeding by supercapacitors without supply rail
1. Principle

2. Transfer Part

3. Traction Part

4. Complete System
« PRINCIPLE »
« EMR and IBC of an Automatic Subway »

- Principle of a new hybrid automatic subway -

Classically

Station 1

Station 2

DC supply rails

Network

NO DC supply rails

Subway "Neoval"
« EMR and IBC of an Automatic Subway »

- Structure considered -

Station 1

Network SC1

Station 2

Network SC1

sub-system in station

on-board sub-system

RECHARGE

TRANSFER

TRACTION

tragtion drives
« EMR and IBC of an Automatic Subway »

- EMR of the system -

EMR’12, Madrid, June 2012

Diagram showing the coupling chopper and the connection between the sub-system in station and the on-board sub-system. The diagram includes symbols for various components such as chopper, inductor, and coupling transformers. The text is not fully transcribed, but it appears to discuss the EMR and IBC of an automatic subway system.
4 basic strategies:

- \(i_{SC1} = \text{cst} \)
- \(i_{SC2} = \text{cst} \)
- \(p_{SC1} = \text{cst} \)
- \(p_{SC2} = \text{cst} \)

\[u_{\text{chop}1 - \text{ref}} \]
\[i_{\text{sc1} - \text{mes}} \]
\[u_{\text{sc1} - \text{mes}} \]
\[i_{\text{sc2} - \text{ref}} \]

\[u_{\text{chop}2 - \text{ref}} \]
\[i_{\text{sc1} - \text{ref}} \]
\[u_{\text{sc1} - \text{mes}} \]
\[u_{\text{sc2} - \text{mes}} \]

\[P_{sc2_{-}est} \]
\[P_{sc1_{-}est} \]

\[u_{\text{chop},1} \]
\[u_{\text{chop},2} \]
\[i_{L1} \]
\[i_{L2} \]

- \(\text{scps} \)
- \(\text{choppers and DC bus} \)
- \(\text{inductors} \)

\text{dSpace Card}
Some experimental results:

For $i_{SC1} = cst$:
- $u_{SC2-meas} (V)$
- $u_{SC1-meas} (V)$
- $i_{SC1-meas} (A)$
- $i_{SC2-meas} (A)$
- $p_{SC2-est} (W)$

For $i_{SC2} = cst$:
- $u_{SC2-meas} (V)$
- $i_{SC1-meas} (A)$
- $i_{SC2-meas} (A)$
- $p_{SC2-est} (W)$
« Traction Part »
« EMR and IBC of an Automatic Subway »

- Study of the traction part -

EMR’12, Madrid, June 2012

Station 1

SC2

EM

Network SC1

Station 2

Network SC1

sub-system in station

connection

don-board sub-system

traction drives

TRACTION
« EMR and IBC of an Automatic Subway »

- EMR of the studied system -

This part will be emulated
< « EMR and IBC of an Automatic Subway »

- Power HIL Simulation -

EMULATOR PART

This part is emulated

EMULATOR PART

EMULATOR
« EMR and IBC of an Automatic Subway »

- From simulation to experimentation -

Electric machines

dSpace Card

Scps
Choppers
And DC bus
Resistor
Inductors

Resistor
- Some experimental results -
« COMPLETE SYSTEM »
EMR'12, Madrid, June 2012

« EMR and IBC of an Automatic Subway »

- EMR of the complete system -

sub-system in station

connection

on-board sub-system
« EMR and IBC of an Automatic Subway »

- EMR and IBC of the complete system -

sub-system in station

on-board sub-system

strategy in-station

strategy on-board
EMR and IBC of an Automatic Subway

- Simulation of the complete system -

$p_{grid} \text{(pu)}$

$u_{SC1} \text{(pu)} \& u_{SC2} \text{(pu)}$

$i_{L3} \text{(pu)}$

no connection

sub-system in station

on-board sub-system

TRANSFER

BRAKING
« CONCLUSION »
- Conclusion -

- Sizing of SC and Power Electronics
- Management of the energy transfer thanks to EMR
- Simulation of the complete system
- Development of a testbed
- Validation in real time
« BIOGRAPHIES AND REFERENCES »
Dr. Walter LHOMME
Université Lille 1, L2EP, France
Associate Professor since 2008
PhD in Electrical Engineering at University of Lille (2007)
Research topics: EMR, Electric and Hybrid Vehicles, Energy Storage Subsystem

Prof. Alain BOUSCAYROL
University Lille 1, L2EP, MEGEVH, France
Coordinator of MEGEVH, French network on HEVs
PhD in Electrical Engineering at University of Toulouse (1995)
Research topics: EMR, HIL simulation, tractions systems, EVs and HEVs

Dr. Philippe DELARUE
University Lille 1, L2EP, France
Associate Professor since 1991
PhD in Electrical Engineering at University of Lille (1989)
Research topics: EMR, power electronics, multi-machine systems

Mr. Eric CHATTOT, Mr. Said EL FASSI
Siemens, France

