Wednesday 22-Sep-21 |

News

Jun 6, 2021

EMR'21 Summer school


14th – 17th June 2021

University of Lille, L2EP, Lille, FRANCE

Category: General
Posted by: EmrAdmin

EMR'21, " Modelling and control using EMR,

application to HEVs and others"

Summer School of University of Lille (France)
Lille, France, 14-17 June 2021

 

Presentation

 

 

Program

 

 

Registration

 

 

Committees

 

 

This year due to the pandemic, EMR'21 will be hybrid including on-line participation from foreign countries.

Download the EMR’21 flyer in PDF (English version)

After Lille (France, 2006), Harbin (China, 2008), Trois-Rivières (Canada, 2009), Lausanne (Switzerland, 2011), Madrid (Spain, 2012), Lille (France, 2013), Coimbra (Portugal, 2014), Lille (France, 2015), Montréal (Canada, 2016), Lille (France, 2017), Hanoi (Vietman, 2018), and Lille (France 2019), the EMR summer school EMR'21 will be held in Lille (France). It will be organized by the University of Lille (France).

This Summer School is dedicated to Master and PhD students, engineers and scientists, from both academia and industry, which have to model and control new multi-physical systems such as industrial multi-drive systems, traction and propulsion systems, hybrid electric vehicles, or renewable energy generation systems.


Photos of EMR'19, Lille, France

Presentation

This workshop is focused on the Energetic Macroscopic Representation (EMR) methodology for modelling and control of complex electromechanical systems.

This Summer School is aimed at Master and PhD students, Engineers and scientists, from both academia and industry, who have to model and control new multi-physical systems such as industrial multi-drive systems, traction and propulsion systems, hybrid electric vehicles, or renewable energy generation systems.

EMR is a graphical formalism that was introduced in 2000 to describe complex electromechanical systems. EMR has since been extended to complex multi-physical systems (thermal science, electrochemistry, fluid mechanics …). EMR is based on the action-reaction principle to organize the interconnection of models of sub-systems according to the physical causality (i.e. integral causality). This description highlights energetic properties of the system (energy accumulation, conversion and distribution). Moreover, an inversion-based control can be systematically deduced from EMR using specific inversion rules.

Compared with other graphical description, such as Bond Graphs or Causal Ordering Graphs (COG), EMR has a more global energetic view and contributes to system’s control design. It differs from structural description tools such as Physic Modelling Language (PML) using Object-Oriented Modelling Language, which makes its libraries to be coupled in the same way as physical units. EMR is focused on the system function and not only on the system structure. EMR gives insights into the real energy operation of systems and allows a deep understanding of its potentialities from a dynamic point of view.

In short, the distinct features of EMR lie in its clarity of physical concepts, as well as their physical causality, and its functional description rather than a structural description. It hence contributes significantly to the design of control and energy management of systems.

Energetic Macroscopic Representation of a Wind Energy Conversion System



Prof. Betty LEMAIRE-SEMAIL
General Chair of EMR'21
(University of Lille,
L2EP, France)

Prof. Alain BOUSCAYROL
Co-Chair of EMR'21
(University of Lille,
L2EP, MEGEVH, France)


Previous page: EMR Keynote VPPC13
Next page: Users List